Chromosome methylation patterns during mammalian preimplantation development.
نویسندگان
چکیده
DNA methylation patterns were evaluated during preimplantation mouse development by analyzing the binding of monoclonal antibody to 5-methylcytosine (5-MeC) on metaphase chromosomes. Specific chromosome patterns were observed in each cell stage. A banding pattern predominated in chromosomes at the one-cell stage. Banding was replaced at the two-cell stage by an asymmetrical labeling of the sister chromatids. Then, the proportion of asymmetrical chromosomes decreased by one-half at each cell division until the blastocyst stage, and chromosomes became progressively symmetrical and weakly labeled. Our results indicate that chromosome demethylation is associated with each DNA replication and suggest that a passive mechanism predominates during early development.
منابع مشابه
DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos.
Methylation of DNA is an essential epigenetic control mechanism in mammals. During embryonic development, cells are directed toward their future lineages, and DNA methylation poses a fundamental epigenetic barrier that guides and restricts differentiation and prevents regression into an undifferentiated state. DNA methylation also plays an important role in sex chromosome dosage compensation, t...
متن کاملOct-4 Regulates DNA Methyltransferase 1 (Dnmt1) Transcription by Direct Regulatory Element Binding
The transcription factor Oct4 plays a pivotal role for the development of mouse preimplantation embryo, and DNA methyltransferase 1 (Dnmt1) maintains the changes of DNA methylation during mammalian early embryonic development. However, little is known of the role of Oct4 in DNA methylation in mouse. In the present study, Kunming white mice were used as an animal model to elucidate the correlati...
متن کاملDelayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos
Full-term development has now been achieved in several mammalian species by transfer of somatic nuclei into enucleated oocytes [1, 2]. Although a high proportion of such reconstructed embryos can evolve until the blastocyst stage, only a few percent develop into live offspring, which often exhibit developmental abnormalities [3, 4]. Regulatory epigenetic markers such as DNA methylation are impo...
متن کاملRole of UHRF1 in de novo DNA methylation in oocytes and maintenance methylation in preimplantation embryos
The methylation of cytosine at CG sites in the mammalian genome is dynamically reprogrammed during gametogenesis and preimplantation development. It was previously shown that oocyte-derived DNMT1 (a maintenance methyltransferase) is essential for maintaining and propagating CG methylation at imprinting control regions in preimplantation embryos. In mammalian somatic cells, hemimethylated-CG-bin...
متن کاملImprinting mechanisms.
A number of recent studies have provided new insights into mechanisms that regulate genomic imprinting in the mammalian genome. Regions of allele-specific differential methylation (DMRs) are present in all imprinted genes examined. Differential methylation is erased in germ cells at an early stage of their development, and germ-line-specific methylation imprints in DMRs are reestablished around...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 12 14 شماره
صفحات -
تاریخ انتشار 1998